Riemann solutions for spacetime discontinuous Galerkin methods

نویسندگان

  • Scott T. Miller
  • Reza Abedi
چکیده

Spacetime discontinuous Galerkin finite element methods [1–3] rely on ‘target fluxes’ on elementboundaries that are computed via local one-dimensional Riemann solutions in the direction normal toelement face. In this work, we demonstrate a generalized solution procedure for linearized hyperbolicsystems based on diagonalisation of the governing system of partial differential equations. We showthat source terms do not influence the Riemann solution in the spacetime setting. We provide detailsfor implementation of coordinate transformations and Riemann solutions. Exact Riemann solutionsfor some linear systems of equations are provided as examples. References1. R. ABEDI AND R.B. HABER AND S. THITE AND J. ERICKSON. An h-adaptive spacetime-discontinuous Galerkinmethod for linearized elastodynamics. Revue Européenne des Eléments Finis, 2005.2. S.T. MILLER AND R.B. HABER. A spacetime discontinuous Galerkin method for hyperbolic heat conduction.CMAME 198:2 (2008) 194–209.3. R. ABEDI AND M.A. HAWKER AND R.B. HABER AND K. MATOUŠ. An adaptive spacetime discontinuous Galerkinmethod for cohesive models of elastodynamic fracture. IJNME 81:10 (2010) 1207–1241.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive spacetime discontinuous Galerkin method for hyperbolic advection–diffusion with a non-negativity constraint

Applications where the diffusive and advective time scales are of similar order give rise to advection– diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models. Non-Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propagation speeds in Fickian models. In this work, we implement a modified, frame-invariant for...

متن کامل

XXI ICTAM, 15–21 August 2004, Warsaw, Poland ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR ELASTODYNAMICS ON UNSTRUCTURED SPACETIME GRIDS

We present an adaptive spacetime discontinuous Galerkin (SDG) method for linearized elastodynamics. The SDG method uses a simple Bubnov-Galerkin projection that delivers stable and oscillation–free solutions, with O (N) complexity and exact momentum balance on every spacetime element. An extended version of the Tent Pitcher algorithm generates unstructured spacetime grids that support simultane...

متن کامل

Spacetime Meshing with Adaptive Coarsening and Refinement

We propose a new algorithm for constructing finite-element meshes suitable for spacetime discontinuous Galerkin solutions of linear hyperbolic PDEs. Our new method is a generalization of the ‘Tent Pitcher’ algorithms of Üngör and Sheffer [3] and Erickson et al. [2]. Given a simplicially-meshed domain Ω in IR and a target time value T , our method constructs a mesh of the spacetime domain Ω× [0,...

متن کامل

Well-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...

متن کامل

Adaptive Unstructured Spacetime Meshing for Four-dimensional Spacetime Discontinuous Galerkin Finite Element Methods

We describe the spacetime discontinuous Galerkin method, a new type of finite-element method which promises dramatic improvement in solution speed for hyperbolic problems. These methods require the generation of spacetime meshes that satisfy a special causality constraint. This work focuses on the extension of the existing 2d×time spacetime meshing algorithm known as TentPitcher to 3d×time prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 270  شماره 

صفحات  -

تاریخ انتشار 2014